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Abstract. The semi-arid regions of Central Asia crucially depend on the water resources supplied by the mountainous areas 15 

of the Tien Shan, Pamir and Altai mountains. During the summer months the snow and glacier melt dominated river discharge 

originating in the mountains provides the main water resource available for agricultural production, but also for storage in 

reservoirs for energy generation during the winter months. Thus a reliable seasonal forecast of the water resources is crucial 

for a sustainable management and planning of water resources. In fact, seasonal forecasts are mandatory tasks of all national 

hydro-meteorological services in the region. In order to support the operational seasonal forecast procedures of hydro-20 

meteorological services, this study aims at the development of a generic tool for deriving statistical forecast models of seasonal 

river discharge. The generic model is kept as simple as possible in order to be driven by available meteorological and 

hydrological data, and be applicable for all catchments in the region. As snowmelt dominates summer runoff, the main 

meteorological predictors for the forecast models are monthly values of winter precipitation and temperature, satellite based 

snow cover data and antecedent discharge. This basic predictor set was further extended by multi-monthly means of the 25 

individual predictors, as well as composites of the predictors. Forecast models are derived based on these predictors as linear 

combinations of up to 3 or 4 predictors. A user selectable number of best models is extracted automatically by the developed 

model fitting algorithm, which includes a test for robustness by a leave-one-out cross validation. Based on the cross validation 

the predictive uncertainty was quantified for every prediction model. Forecasts of the mean seasonal discharge of the period 

April to September are derived every month starting from January until June. The application of the model for several 30 

catchments in Central Asia - ranging from small to the largest rivers – for the period 2000-2015 provided skilful forecasts for 
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most catchments already in January. The skill of the prediction increased every month, with R2 values often in the range 0.8 – 

0.9 in April just before the prediction period. In summary, the proposed generic automatic forecast model development tool 

provides robust predictions for seasonal water availability in Central Asia, which will be tested against the official forecasts in 

the upcoming years, with the vision of operational implementation. 

 5 

1 Introduction 

Central Asian region encompassing the five countries Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan as 

well as northern parts of Afghanistan and north-western regions of China is characterized by the presence of two major 

mountain systems Tien Shan and Pamir drained by a number of endorheic river systems such as Amudarya, Syrdarya, Ili, 

Tarim and a few smaller ones. The Central Asian river basins are characterized by the semi-arid climate with strong seasonal 10 

variation of precipitation. Most precipitation falls as snow during winter and spring months in Western and Northern Tien 

Shan (Aizen et al., 1995, 1996;Sorg et al., 2012).  In contrast, Central and Eastern Tien Shan receive their largest precipitation 

input during the summer months. The Pamir mountains receive the highest portion of precipitation during winter and spring 

months with minimum in summer (Schiemann et al., 2008;Sorg et al., 2012). 

 Precipitation also exhibits a high spatial variation, with e.g. less than 50 mm/year in the desert areas of Tarim and around 100 15 

mm/year on leeward slopes of Central Pamir to more than 1000 mm/year in the mountain regions exposed to the westerly air 

flows being a major moisture source in the region (Aizen et al., 1996;Bothe et al., 2012;Hagg et al., 2013;Schiemann et al., 

2008). This makes Tien Shan and Pamir Mountains the regional ‘water towers’, with snow melt to be the dominant water 

source during spring and early summer months. During summer, glacier melt and liquid precipitation gain importance 

depending on the basin location and degree of glacierisation (Aizen et al., 1996) . Tien Shan and Pamir mountains exhibit 20 

particularly high relative water yield compared to the lowland parts of these catchments (Viviroli et al., 2007). Related to the 

economic water demands in the lowland plains primarily for irrigated agriculture, Tien Shan and Pamir mountains are among 

the most important contributors of stream water worldwide (Viviroli et al., 2007). ). They are also among those river basins 

with the highest share of glacier melt water in summer, particularly in drought years (Pritchard, 2017). Within the Aral Sea 

basin, to which the Amudarya and Syrdarya rivers drain, the actually irrigated area amounts to approximately 8.2-8.4 million 25 

ha (Conrad et al., 2016;FAO, 2013) Additionally, considerable irrigation areas are located in the Aksu/Tarim basin, where 

agricultural land doubled in the period 1989-2011 and land use for cotton production increased even 6-fold (Feike et al., 2015). 

Irrigated agriculture in Central Asia (CA) is mainly fed by the stream water diversion with only small portion of groundwater 

withdrawal (FAO, 2013;Siebert et al., 2010). Hence, reliable prediction of seasonal runoff during vegetation period (April – 

September) is crucial for agricultural planning, yield estimation and management of reservoir capacities in the upper parts of 30 

the catchments. Seasonal forecasts are one of the major responsibilities of the state hydrometeorological (hydromet) services 

of the Central Asian countries and are regularly released starting from January till June with the primary forecast issued end 
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of March – beginning of April for the upcoming 6-months period. In some post-soviet countries, these forecasts are typically 

developed based on the empirical relationships for individual basins relating precipitation, temperature and snow depth/SWE 

records to seasonal discharge, partly available only in analogue form as look-up tables or graphs (Hydromet Services, 

questionnaire survey). Particularly, point measurements of snow depth and/or snow water equivalent (SWE), which have been 

carried out by helicopter flights or footpath surveys in mountain regions in the past decades, are costly or not feasible due to 5 

access problems nowadays. Other hydromet services apply the hydrological forecast model AISHF (Agaltseva et al., 1997) 

developed at the Uzbek Hydrometeorological Service (Uzhydromet), which computes discharge hydrographs by considering 

temperature, snow accumulation and melt. Snow pack is accumulated in winter and temperature and precipitation are taken 

from an analogous year to drive the model in the forecast mode. Hydrometeorological services rely on the available 

meteorological and hydrological data acquired by the network of climate and discharge stations, which, however, strongly 10 

diminished during the 1990s (Unger-Shayesteh et al., 2013) and slowly recovers nowadays, partly with substantial international 

support (e.g. Schöne et al. (2013); CAHMP Programme by World Bank; previous programmes by SDC and USAID). Hence, 

to fulfill their task, hydrometeorological services need the timely to near real-time data and simple methodologies capable of 

utilizing available information. 

Schär et al. (2004) showed the potential of the ERA-15 precipitation data from December-April period to explain about 85% 15 

of the seasonal runoff variability in May-September in the large-scale Syrdarya river basin. The explained variance for the 

Amudarya River amounted, however, to only about 25%, presumably due to poor precipitation modelling in the ERA dataset, 

strong influence of glacier melt and water abstraction for irrigation purposes. Similarly, Barlow and Tippett (2008) explored 

the predictive power of NCEP-NCAR cold-season (November-March) precipitation for warm-season (April-August) discharge 

forecast using canonical correlation analysis. Though for some of the 24 Central Asian gauges, no skillful prediction could be 20 

achieved, for a few catchments 20 to 50% explained variance could be attained. Archer and Fowler (2008) utilized temperature 

and discharge records additionally to precipitation for spring and summer seasonal flow forecast on the southern slopes of 

Himalaya in northern Pakistan using multiple linear regression models. Despite good predictions of spring and early summer 

flows, late summer discharges were poorly forecasted due to the strong influence of summer monsoon. Recently, Dixon and 

Wilby (2015)  demonstrated the skill of a linear regression model for the Naryn basin, Kyrgyzstan, based on TRMM 25 

precipitation from October-March to explain 65% of the seasonal flow variance in the vegetation period. The authors selected 

specific TRMM pixels in the catchments showing the highest correlation to seasonal discharge. They also explored the 

predictive skills of multiple linear regression models additionally including temperature and antecedent discharge and testing 

different lead times from one to three months. They showed that forecasts based on multiple linear regression models are 

always superior to zero order forecasts, i.e. the mean flow. 30 

The fact that substantial snow accumulation in Central Asian mountain regions during the winter and spring months 

significantly governs runoff in the vegetation period can be effectively utilized for seasonal forecasts. For a similar climatic 

setting, Pal et al. (2013) included the measurements of snow water equivalent at point locations into multiple linear regression 

models along with precipitation, antecedent discharge and temperature-based predictors. Linear models with multiple predictor 
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combinations achieved skilful forecasts of the spring (March-June/April-June) seasonal flow in northern India on the southern 

Himalaya slopes. Point snow measurements are, however, rarely available and remotely sensed snow cover extent can provide 

a viable alternative. Based on the monitored snow cover extent, e.g. using optical satellite imagery, and additionally 

considering temperature and precipitation to implicitly approximate snow water equivalent (SWE) a solid basis for seasonal 

discharge forecast can be formed. The MODIS snow cover product was shown to deliver high accuracy for the Central Asian 5 

region (Gafurov et al., 2013). Methodologies to remove cloud obstruction of optical imagery have matured over the past decade 

(Gafurov and Bárdossy, 2009;Gafurov et al., 2016) and tools for the automated image acquisition and processing reached the 

operational level (Gafurov et al., 2016). MODIS snow cover data was used for runoff forecast in the Argentinian Andes in the 

high-water season (September-April), though no cloud elimination algorithms were applied (Delbart et al., 2015). Snow cover 

in September-October could explain about 60% of the high-water season discharge variance. However, no skilful forecast with 10 

lead times greater than zero were possible. Rosenberg et al. (2011) proposed a hybrid (statistical – hydrological model) 

framework for seasonal flow prediction in Californian catchments using accumulated precipitation in antecedent period and 

SWE modelled by a distributed hydrological model. These two predictors were linked to seasonal discharge by principal 

component and Z-score regression (Rosenberg et al., 2011). The hybrid approach was found comparable and in some cases 

superior to a purely statistical approach, however, at the cost of effort for hydrological simulation of the SWE dynamics. 15 

Based on the finding of the studies listed above, we propose a simple methodology for the operational forecast of seasonal 

runoff for the vegetation period (April-September) for all Central Asian catchments, which areas range over three orders of 

magnitude. The method is based on multiple linear regression models with automatic predictor selection, whereas the 

predictors are based on the readily available precipitation, temperature and discharge gauge records and additionally leverage 

by the operationally processed cloud-free MODIS snow cover product. It is argued, that in linear modelling the use of 20 

meteorological data from a single gauging station for a large catchment is justified, as long as the variability of the station 

records are representative for the whole catchment. We demonstrate the model predictive skill and robustness in a cross-

validation and discuss the relative significance of the automatically selected predictors depending on the prediction lead time. 

   

 25 

2 Study sites and data 

For the testing of the forecast models 13 catchmentss were selected. They cover a wide range of geographical regions, ranging 

from catchments along the western slopes of the Altai mountains in Eastern Kazakhstan (Uba, Ulba), over catchments at the 

western and northern rim of the Tien-Shan (Chirchik, Talas, Ala-Archa, Chu, Chilik, Charyn) and central Tien-Shan 

(Karadarya (Andijan), Naryn) mountains (cf. Aizen et al., 2007), to the northern and central Pamir (Amudarya) and the northern 30 

Hindukush (Murgap). The size of the catchments varies over three orders of magnitude from 239 km2 to 288,000 km2. Figure 

1 provides an overview of the location and size of the catchments, while Table 1 additionally lists the discharge and 
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meteorological gauging stations used for the seasonal flow forecast. The wide range of catchment locations, climatic conditions 

and sizes enable a testing of the proposed forecast models under different boundary conditions, and thus provides an indication 

of the applicability, robustness and transferability of the approach.  

The catchment boundaries are derived to map the catchment area draining to the selected discharge stations. For the 

meteorological data (temperature and precipitation) meteorological stations run by the individual hydrometeorological services 5 

were selected. Ideally those are located in the catchment area and have sufficient data coverage of at least 16 years (starting in 

2000 in order to be consistent with the MODIS temporal coverage). However, in some catchments meteorological stations 

fulfilling these criteria were not available. For those catchments stations nearby were selected for the prediction. 

 
Figure 1: Overview of the catchments for which prediction models were established, with locations of discharge and meteorological 10 
gauging stations used (coordinates in latitude/longitude). 
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Table 1: List of the catchments for which prediction models are derived with discharge (Q) and meteorological gauging stations used 
for the prediction. Note that Charvak, Andijan and Toktogul are reservoir inflows summing several tributary inflows. For the 
Charvak reservoir the mean temperature and precipitation data of three meteo stations located in the catchment was used. Latitude 
and longitudes are in decimal degrees (WGS84). Q mean seasonal is multiannual mean seasonal discharge from April to September 
for the period 2000-2015. 5 

 catchment discharge 
station 

Q deg. 
lat Q long meteo station 

meteo 
deg. 
lat 

meteo 
deg. 
long 

meteo 
altitude 

[m] 

catchment 
area [km2] 

Q mean 
seasonal 
[m3/s] 

mean 
altitude 

[m] 
1 Uba Shemonaikha 50.620 81.880 Shemonaikha 50.620 81.880 300 9324 269.2 740 

2 Ulba Perevalochnaya 50.033 82.843 Oskemen 50.030 82.700 375 5080 151.4 950 

3 Chirchik Charvak 41.626 69.969 Chatkal 41.822 71.097 2300 10903 346.21 2575 
     Oygaing 42.000 70.633 1620 10903   
     Pskem 41.861 70.384 2220 10903   

4 Talas Kluchevka 42.581 71.836 Kyzyl-Adyr 42.616 71.586 1764 6663 19.62 2424 

5 Ala-Archa Kashka-Suu 42.650 74.500 Baytik 42.670 74.630 1579 239 8.83 3288 

6 Chu Kochkor 42.250 75.833 Kara Kuzhur 41.930 76.300 855 4961 34.53 2934 

7 Chilik Malybai 43.494 78.392 Shelek 43.597 78.249 600 3964 70.67 2603 

8 Charyn Sarytogai 43.553 79.293 Zhalanash 43.043 78.642 1690 7921 59.06 2260 

9 Karadarya Andijan 40.814 73.257 Ak-Terek 40.365 74.222 1190 11670 186.21 2663 

10 Naryn Toktogul 41.760 72.750 Naryn city 41.460 75.850 2040 51926 653.13 2850 

11 Upper 
Naryn  Naryn city 41.460 75.85 Tien Shan 41.910 78.210 3614 10343 168.64 3546 

12 Amudarya Kerki 37.842 65.23 Kerki 37.842 65.230 237 287714 2551.02 2578 

13 Murgab Takhta Bazar 35.966 62.907 Takhta Bazar 35.966 62.907 354 35767 40.13 1707 
 

For both discharge and meteorological data monthly values were obtained for the stations listed in Table 1, i.e. monthly mean 

discharges, monthly mean temperatures and monthly precipitation sums. For the presented study meteorological station data 

was used, because of the operational availability to the CA hydromet services. Gridded re-analysis products like ERA-Interim 

typically have a latency of weeks to months, and thus cannot be used for operational forecasts to fulfil the mandatory 10 

regulations While station temperature and precipitation data are likely not representative for basin average values, it is assumed 

that the variability of the catchment averages and the station data is similar. This, in turn, enables the use of the station data in 

the statistical forecast using multiple linear regressions. 

In addition to the station data, mean monthly snow coverages for the individual catchments were calculated using daily snow 

cover data derived by the MODSNOW-Tool (Gafurov and Bárdossy, 2009;Gafurov et al., 2016). MODSNOW uses the 15 

MODIS satellite snow cover product and applies a sophisticated cloud elimination algorithm (Gafurov and Bárdossy, 

2009;Gafurov et al., 2016) to obtain cloud free daily snow cover images. The MODSNOW-Tool runs operationally in most of 

the CA hydromet services, thus enabling the use of snow cover information for operational forecasts.  
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Due to the use of MODIS snow cover, which is available since March 2000, the time series of the data used for the construction 

of the forecast models had to be limited to post-2000. The time period for the model development and testing was thus set to 

2000 – 2015, for which continuous time series for all data and stations were available.  

The seasonal discharge, i.e. the predictand of the forecasts, is calculated as the mean monthly discharge for the period April to 

September. 5 

 

2.1 Seasonal discharge variability 

Figure 2 shows the seasonal discharges for all catchment considered in this study. The top panel highlights the differences in 

the magnitude of the seasonal discharge, spanning almost three orders of magnitude (cf. also Table 1). Discontinuous lines 

indicate data gaps. In order to illustrate differences in the inter-annual variability of the seasonal discharge the lower panel of 10 

Figure 2 plots the seasonal discharges normalized to zero mean and standard deviation of 1. This plot indicates different inter-

annual variability patterns of the different catchments. Therefore cross-correlations of the seasonal discharges are calculated 

and hierarchically clustered (Figure 3). The correlation matrix in Figure 3 shows that the seasonal discharges mainly cluster 

according to their geographical location. The variability of the seasonal discharge of the two catchments in the Altai region 

(Uba, Ulba) is distinctively different to all the others. Also the two most southern catchments (Amudarya and Murgap) form a 15 

distinct cluster that is joined by the most western catchment of the northern Tien Shan, Chirchik. However, Chirchik is also 

well correlated to the largest group, the catchments in the Tien Shan, which all show similar inter-annual variability of the 

seasonal discharge. An exception to this is the smallest catchment in the study, Ala-Archa, which is not correlated to any of 

the other catchments, presumably due to the strong influence of local meteorology and glacier-melt dominated discharge 

formation in the summer months.  20 

The analysis of the inter-annual variability thus maps the geographical and climatic differences of the catchments considered 

in this study to a large extent. These differences in variability, but also in the magnitude of the discharges and catchment size 

imply that the forecast methods can be tested against a wide range of boundary conditions. If skilful forecasts are obtained for 

all catchments, it can be argued that the approach delivers robust forecasts and can be transferred to other regions with similar 

streamflow generation characteristics.  25 
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Figure 2: Seasonal discharge (mean monthly discharge for the period April – September) for the catchments under study. The 
lower panel shows the seasonal discharge normalized to zero mean and standard deviation of 1. 
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Figure 3: Correlation matrix of the seasonal discharges of the catchment under study. The catchments are hierarchically clustered 
using the Ward algorithm. The colour and size of the circles indicate the direction and strength of the correlations, with blue colours 
indicating positive, and red colours indicating negative correlations. The numbers provide the actual linear correlation coefficient. 
The coloured circles indicate significant correlation at a significance level of p = 0.05. 5 

 

3. Method 

As mentioned in the introduction, the seasonal discharge during the vegetation period of April to September in CA is dominated 

by snow melt in the mountain regions. Therefore a good estimation of the snow accumulation and snow water equivalent in 

the catchments during the winter months may provide reliable forecasts of the discharge during the vegetation period.  10 

However, data about the depth and snow water equivalent are not regularly acquired except for some dedicated research sites. 

Thus alternative data containing proxy information about the snow depth and water equivalent must be used. Therefore 

predictors for the forecast models were derived from mean monthly temperature records, monthly sums of precipitation and 

monthly mean snow coverage of the catchments. It is argued that the combination of these factors is able to serve as proxy 

data for snow depth and water equivalent. While the precipitation directly contains information about the snow fall amount 15 

and thus accumulation, temperature may contain information on the wetness of the snow pack. In combination with snow 
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coverage, temperature and precipitation may thus provide information about the snow volume and water content. In addition 

to the climate data monthly antecedent discharge can serve as an indicator about the magnitude of the snow melt process and 

groundwater storage state and release, and is used as predictor, too.  

3.1 Generation of the predictor set 

The core set of predictors consists of the monthly values preceding the prediction date. According to the operational forecast 5 

schemes of the CA hydromet services a series of different prediction dates were defined. The first prediction of the seasonal 

mean discharge (April to September) is issued on January 1st, followed by predictions on February 1st, March 1st, April 1st, 

May 1st, and June 1st. The predictions January to March are preliminary forecasts, while the prediction on April 1st is the most 

important for the water resource planning in the CA states. The following forecasts serve as corrections of the April forecast. 

They are actually partial hindcasts, as the predictors already cover a part of the prediction season. For the prediction up to the 10 

1st of April the monthly values over the whole winter period, i.e. from October onwards are used. For later predictions this was 

limited to data of the prediction year, i.e. from January onwards, in order to keep the number of predictor combinations in 

reasonable limits. The monthly predictor values were accompanied by multi-monthly means, spanning over two and three 

months prior to the prediction date, and mean values for the whole predictor period defined above, i.e. either from October to 

the prediction month, or from January to the prediction month, respectively.  15 

Furthermore, composites were calculated from the climatological data in order to extend the predictor set. They are introduced 

in order to explore their potential to map snow wetness better and thus to improve the prediction. It is argued that composites 

can improve the prediction by linear models, as some non-linear interactions might be mapped better by composites compared 

to the raw data (as shown in e.g. Hall et al., 2017). Analogously to the original data, monthly and multi-monthly composites 

were derived. For the composites, products of “temperature and precipitation”, “temperature and snow coverage”, 20 

“precipitation, snow coverage and temperature”, “precipitation and snow coverage” were used. Antecedent discharge was not 

included in the composites, because this should not influence the snow cover characteristic.  

3.2 Statistical modelling 

For the development of the statistical forecast models standard multiple linear regression (MLR) was applied. All possible 

predictor combinations, which are different for every prediction month as described in 3.1, are used in the MLR for the 25 

construction of forecast models. However, some restrictions were put on the predictor combinations in order to avoid 

overfitting and thus spurious regression results: 

1. The predictors are grouped into 8 groups: snow cover, temperature, precipitation, antecedent discharge, and the four 
composite types. 

2. The maximum number of predictors in a regression is limited to four. 30 
3. Only one predictor from each group of predictors can be used in an individual regression model. 
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This resulted in 7,728 predictor combinations, i.e. multiple linear models to be tested in January, and increased to 155,690 

possible models in April. A complete list of the predictors for the different prediction months is provided in the Annex. The 

coefficients for all these linear models were automatically fitted during the MLR by the least squares method. The best models 

were selected based on the lowest Predicted Residual Error Sum of Squares (PRESS) value obtained by a Leave-One-Out 

Cross Validation (LOOCV). In the LOOCV one data point of the time series of seasonal discharge is removed from the data 5 

set for fitting the MLR. The missing data point is then estimated by the model fitted to the remaining data. The PRESS value 

is the sum of squared errors of all seasonal discharges left out and the associated predicted LOOCV values. The LOOCV is 

testing the MLR for robustness and can avoid overfitting and incidental good MLR results valid for the whole data set only.  

In the presented study not only the single-best model according to PRESS of the LOOCV-MLR was selected as prediction 

model, but rather the best 20 models. This selection aims at the analysis of the differences between the best models in terms 10 

of performance and predictors, but also serves as a model ensemble for the forecast of the seasonal discharge. The distribution 

of the residuals of the best 20 forecast models was evaluated to provide 80% predictive uncertainty intervals for every forecast. 

However, it has to be noted that the choice to use the best 20 models is subjective, and this number can be increased or reduced. 

Moreover, a set of specific models of the best models can be selected according to their performance measures and temporal 

dynamics by experts knowledgeable of the individual catchments.  15 

 

3.3 Predictor importance 

The predictors of the selected best models were analysed for their importance, i.e. their share of the overall explained variance 

(R2) of the individual models. This was achieved by the lmg algorithm implemented in the R-package relaimpo (Grömping, 

2006). lmg is based on sequential R2s, but explicitly eliminating the dependence on predictor orderings by averaging over 20 

orderings using simple unweighted averages. This procedure yields information about the importance of the individual 

predictors at different points in time for the catchments under study, which in turn can be used for a discussion of the factors 

responsible for the winter snow accumulation and snow water content in the catchments.  

However, such a discussion is complicated by the use of the composite predictors. Therefore the importance of composite 

predictors is divided into equal proportions to the components of the composites. If more than one composite is used in a 25 

model, the proportions associated to the component factors (snow cover, precipitation, temperature) are summed up and 

displayed as parts of the composite importance in the figures presented in 4.3. This analysis is not meant to provide a 

quantitative estimation for the component importance of the composite predictors, but rather to enhance the discussion and 

interpretation of the predictors of the selected forecast models.  

In addition to the importance of an individual model (here the best LOOCV model), the mean importance over the best 20 30 

LOOCV models is calculated. This is achieved by calculating the fractions of the sum of importance of an individual predictor 

for all 20 models to the sum of the R2 values of all 20 models for each catchment and month. These fractions are then multiplied 
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by the mean R2 values of the best 20 models. This mean predictor importance can be compared to the predictor importance of 

the best model in order to analyse the stability of the predictor selection within the best 20 LOOCV models. 

 

4. Results 

For all catchments under study, the MLR fitting with LOOCV described in 3.2 was applied for different forecast dates ranging 5 

from January 1st to June 1st. The best 20 models according to the PRESS resulting from the LOOCV were retained for 

prediction. In general the performance of the linear models increased from January to June, with the best models reaching R2 

values in the range of 0.86 – 0.96 in April and 0.88 – 0.99 in June. For most of the catchments high R2 values in the range of 

0.58 – 0.88 were already obtained in January. Only for Amudarya and Chirchik the performance is unsatisfyingly low in 

January, but increases to > 0.7 already one month later in February. Table 2 lists the R2 values of the best LOOCV models for 10 

all catchments and forecast months. Note that the R2 in the table are calculated using the coefficients of the linear models fitted 

to the whole data set, i.e. they are not cross validated.  

While for most of the catchments, the performance of the models gradually increases with decreasing lead time, the 

performance for the catchment no. 7, Chilik, shows significant decreases and increases. This is caused by a comparatively 

large number of missing discharge and predictor data. The automatic fitting algorithm takes advantage of this by finding 15 

models able to explain the fewer data points better compared to the full time series. However, these models can already 

represent an overfitting and are thus less reliable or stable in time compared to models fitted to longer time periods.  

In order to get a more encompassing picture of the model performance, Figure 4 shows the temporal evolution of the R2 

evaluated for the complete time period of the single best LOOCV model, the minimum R2 of the best 20 models, the mean R2 

of the best 20 models, the root mean square error (RMSE) of the single best LOOCV model calculated for the full data set 20 

normalized to the mean seasonal discharge (cf. Table 1), and the PRESS value of the best model. Note that the highest R2 value 

is not necessarily the R2 of the single best model, because the best model is selected according to the lowest PRESS in the 

LOOCV, and not the best R2 evaluated using the whole time series. Therefore the mean R2 in January is occasionally higher 

than the R2 of the best LOOCV model, i.e. the most robust model. In general, Figure 4 shows that the different R2, RMSE and 

PRESS values are similar in their evolution in time, i.e. increase (R2), resp. decrease (RMSE, PRESS) with later forecast 25 

months. This indicates that for all best 20 models the performance is improving with later forecast months.  

Furthermore, the difference between min R2 and mean R2 to the R2 of the single best LOOCV model is typically larger in the 

early prediction months. This indicates a wider spread of model performance within the selected 20 models for the predictions 

with longer lead times. This difference decreases with shorter lead times, meaning that more models with similar high 

performance can be found, and thus uncertainty of the model ensemble is reduced. To a certain extent this is likely caused by 30 

the larger number of possible predictors for later prediction months, but it is also well justified to assume that the later predictors 
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have more predictive power: data from the late winter months can better describe the snow coverage and water content 

compared to predictors from the previous autumn. This issue will be discussed further in Section 4.3.  

Figure 4 shows that the RMSE of the best model of the LOOCV is at maximum about 35% of the long term seasonal mean 

discharge (Talas in January). However, for most catchments the normalized RMSE is below 20% in January already. For the 

important April forecast the normalized RMSE is generally below 10%, except for Talas and Murgap, where it remains at 5 

20%. These values state the high performance of the linear forecast models in terms of actual discharge, and are thus a useful 

information for practitioners in order to assess the value of the forecasts.  

Figure 4 also shows the PRESS values of the best models and the development with the forecast months. As for the R2 values, 

the PRESS values generally decrease (i.e. improve) with prediction month. However, occasionally increases can be observed 

for later forecast months. This can be also seen in the R2 values, but less pronounced because of the scale of the left y-axis. 10 

This phenomenon is caused by the changing predictor sets from forecast month to forecast month. Particularly multi-monthly 

predictors change for each prediction date according to the parameter selection outlined in Section 3.1. As this phenomenon 

of increasing PRESS values usually occurs in April or May, it can be hypothesized that the information of the late winter/early 

spring months used in the later forecasts does not contain better information about the snow cover as the previous months. 

With respect to a practical application, the better performing forecasts from the previous months can be used, which is 15 

equivalent to an extension of the predictor set by including the predictors of the previous month. 

This general reduction of PRESS also means that the models become more robust with later prediction months. To illustrate 

this more clearly, Figure 4 also shows the relation between the mean R2 of the LOOCV for all 20 models to the mean R2 of 

the full model fit. The mean R2 of the LOOCV is calculated from the LOOCV residuals used to calculate the PRESS. According 

to the rationale of the LOOCV, a model is more robust and less prone to overfitting, if the LOOCV-R2 is very close to the 20 

overall R2. Figure 4 shows that this is generally the case for the catchments with very high R2 values, and also for later 

prediction months. This means that the selection of the predictors is likely stable even if additional data is added to the time 

series in future. However, there are some catchments for which comparably less robust models could be derived even for later 

prediction months (5. Ala-Archa, 6. Chu). For these catchments it is likely that the predictor selection will change with 

additional data. 25 
 

Table 2: R2-values of the best performing prediction models from the LOOCV for all catchments and prediction months. “best” 
indicates the single best model according to the LOOCV, “mean” indicates the mean percentage over the best 20 models according 
to the LOOCV. 

 
January February March April May June 

 best mean best mean best mean best mean best mean best mean 
1 Uba 0.747 0.705 0.874 0.793 0.887 0.816 0.865 0.849 0.858 0.853 0.971 0.965 

2 Ulba 0.740 0.582 0.802 0.626 0.848 0.773 0.909 0.860 0.961 0.953 0.988 0.982 

3 Chirchik 0.306 0.424 0.710 0.677 0.683 0.703 0.922 0.918 0.952 0.953 0.979 0.974 

4 Talas 0.720 0.592 0.853 0.796 0.863 0.803 0.873 0.848 0.918 0.894 0.972 0.966 
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5 Ala-Archa 0.580 0.569 0.731 0.609 0.833 0.683 0.745 0.714 0.799 0.804 0.887 0.817 

6 Chu 0.643 0.645 0.773 0.703 0.811 0.758 0.912 0.791 0.831 0.663 0.881 0.837 

7 Chilik* 0.919 0.883 0.793 0.837 0.946 0.910 0.880 0.850 0.920 0.872 0.955 0.922 

8 Charyn 0.745 0.612 0.882 0.822 0.864 0.842 0.910 0.868 0.957 0.959 0.990 0.982 

9 Karadarya 0.695 0.651 0.744 0.655 0.917 0.872 0.983 0.977 0.984 0.985 0.986 0.981 

10 Naryn  0.738 0.759 0.773 0.751 0.876 0.886 0.884 0.874 0.903 0.920 0.896 0.929 

11 Upper Naryn  0.880 0.867 0.929 0.901 0.940 0.925 0.962 0.939 0.899 0.893 0.965 0.961 

12 Amudarya 0.278 0.348 0.894 0.822 0.893 0.897 0.919 0.871 0.926 0.908 0.988 0.981 

13 Murgap 0.622 0.605 0.827 0.699 0.858 0.738 0.862 0.818 0.979 0.971 0.998 0.997 

* the performance of Chilik is not representative and comparable to the other catchments due to missing discharge and predictor data. 
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Figure 4: Performance of the prediction models for the different catchments and prediction months. R2 best model is R2 of the single 
best LOOCV model, mean R2 is mean R2 of the best 20 LOOCV models, min R2 is minimum R2 of the best 20 LOOCV models, 
robustness is mean LOOCV-R2 of the best 20 models divided by the mean R2, RMSE norm. is the root mean squared error of the 
single best model normalized to mean multi-annual seasonal discharge, PRESS is predictive residual sum of squares of the single 5 
best model. 
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In addition to the performance metrics Figure 5 plots the temporal dynamics of the best LOOCV models for all six prediction 

months. It can be seen that the models can map the high variability of the observed seasonal discharges very well, often already 

in January or February. This graphically corroborates the findings derived from the performance metrics and underlines that 

the good performance of the models is not a statistical artefact. 5 
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Figure 5: Forecasts of the seasonal discharge by the single best model selected by the LOOCV for the individual catchments and 
all prediction months. The blue lines show the observed seasonal discharges. Note that some models do not provide forecasts for 

every year due to missing predictor data. 

 5 
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In order to set the performance of the presented models in the context of the routines and guidelines of the Central Asian 

hydromet services, the performance of the models was also estimated according to the performance criteria used by the 

hydromet services. This is defined by: 

𝑆𝑆𝜎𝜎 = |𝑟𝑟𝑟𝑟𝑟𝑟|
𝜎𝜎𝑄𝑄𝑄𝑄

 (1) 5 

With |res| denoting the absolute value of the residual of an individual forecast, and σQs the standard deviation of the seasonal 

discharge (here calculated for the discharge time series used, i.e. for the period 2000-2015). According to the protocols of the 

hydromet services an acceptable (“good”) forecast is defined by Sσ < 0.675. Table 3 shows how often this criteria was fulfilled 

during the analysis period 2000-2015 for the best model, and on average by the best 20 models. For the critical forecast month 

April the criteria was fulfilled for 88% of the years (14 out of 16 years) for most of the catchments. For the smallest and the 10 

largest catchment (Ala-Archa and Amudarya respectively) the numbers were lower, but still as high as 73% and 81%. For all 

catchments the percentages increase further for the later forecast months. These findings are also valid for all 20 selected best 

models, as the very similar percentages of the mean of all models compared to the best model indicate. This means that the 

developed models would provide acceptable forecasts for the hydromet services in the range of 80%-90% for the important 

forecast month April.  15 

 

Table 3: Number of times the models yield acceptable prediction according to the criteria of the Central Asian hydromet services 
for all catchments and prediction months. Numbers indicate percentage of the years of the period 2000-2015 for which the criteria 
for an acceptable forecast is fulfilled. “best” indicates the best model according to the LOOCV, “mean” indicates the mean 
percentage over the best 20 models according to the LOOCV. 20 

 January February March April May June 
best mean best mean best mean best mean best mean best mean 

1 Uba 69 74 88 86 88 86 88 83 88 91 94 96 
2 Ulba 80 63 87 70 87 79 93 87 93 91 93 95 
3 Chirchik 50 53 75 72 69 74 88 93 94 96 100 99 
4 Talas 75 68 94 81 88 81 88 88 94 92 94 94 
5 Ala-Archa 67 63 73 65 80 71 73 74 80 79 87 80 
6 Chu 75 75 75 71 88 78 94 80 88 73 100 91 
7 Chilik 85 82 85 85 85 95 92 88 100 93 100 100 
8 Charyn 75 67 88 82 81 83 94 90 94 93 88 91 
9 Karadarya 75 72 75 72 88 83 88 88 88 89 94 93 
10 Naryn  88 78 75 79 88 88 88 87 100 96 100 99 
11 Upper 

Naryn  
88 85 88 87 88 89 94 92 94 86 94 91 

12 Amudarya 44 47 81 74 75 78 81 80 100 95 88 87 
13 Murgap 75 72 88 80 88 78 88 88 94 94 88 92 
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4.1 Predictive uncertainty 

In order to quantify the predictive uncertainty the empirical 10% and 90% percentiles of the residuals of the best 20 models 

were calculated for every prediction month. The quantiles of the residuals were then added to the actual model predictions, 

thus providing an 80% predictive uncertainty band, i.e. an interval in which the true value of the seasonal discharge should lie 

with a probability of at least 80%. Figure 6 shows the predictive uncertainty bands for every catchment along with the observed 5 

seasonal discharge. The predictive uncertainty for the different prediction months are shown in shades of orange. In general it 

can be seen, that the predictive uncertainty bands narrow with later prediction months, illustrating the better prediction during 

later prediction months described above. While this is perfectly visible for most catchments (e.g. 3. Chirchik, 7. Karadarya), 

it is not the case for some others (5. Ala-Archa, 6. Chu, 10. Naryn). The main reason for this is the larger difference between 

the predictions and performance of the best 20 models compared to the other catchments, as indicated by the difference between 10 

the best and mean R2 shown and listed in Figure 4 and Table 2, respectively. This causes a wider distribution of the residuals 

of the best 20 models and thus higher predictive uncertainty. However, if only the best or a smaller selection of the best 20 

models are used for a forecast, the predictive uncertainty would also be reduced. This means, that the uncertainty bands derived 

depend on the subjective choice of the number of models to be kept in the model ensemble. Another reason for wider predictive 

uncertainty bands for later months is the observed decline in performance during later months in some catchments due to the 15 

changed predictor set (e.g. for 6. Chu). This causes again higher predictive uncertainty bands, which overlay the narrower band 

from the previous month.  

From a formal point of view the uncertainty bands correctly include at least 80% of the observed seasonal discharges, even for 

very narrow bands (e.g. in June for 3. Chirchik or 9. Andijan). This indicates that the uncertainty estimation derived from the 

regression residuals provide a reliable uncertainty information for decisions based on the forecasts given by the MLR models. 20 

However, it must be noted that the derived uncertainty bands represent the predictive uncertainty of the MLR models fitted to 

the available time series. They do not account for any uncertainty stemming from a possible lack of representativeness of the 

time series used for the “real” variability of the seasonal discharge in Central Asia. 
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Figure 6: 80% predictive uncertainty bands for all catchments and forecasts months. The blue lines indicate the observed seasonal 
discharges. 
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4.2 Predictor importance (Is there some hydrological process information in the linear model?) 

Figure 7 illustrates the importance of the predictors of the selected MLR models as absolute fractions of the R2 values, whereas 

it is not differentiated between individual predictors, but rather between predictor classes described in 3.1. The left panel of 

Figure 7 shows the importance for the single best LOOCV model, while the right panel shows the average importance of the 

predictors for the best 20 LOOCV models. A comparison of the left and right panels shows that the predictor selection and 5 

importance for the different catchments and prediction months of the best model is quite similar to the mean of the best 20 

models. This indicates that the predictor selection for good forecasts is quite stable, indicating that multicollinearity of the 

predictors does not impede the predictor selection. Moreover, this can be interpreted that the predictor selection is not random, 

but rather and actually has hydrological meaning. However, an interpretation of the contributions of the different factors is 

complicated by the use of the composites, which are almost always selected as one or more predictors in the MLR models. 10 

Nevertheless, some general features can be identified from Figure 7: 

• Typically there is no single factor dominating the explained variance, with the exception of 9. Andijan, where the 

composites have an exceptionally large share on the explained variance. But as the composites are comprised of the 

other predictors (except antecedent discharge), this statement is actually valid for all catchments. This indicates that 

the winter snow accumulation providing the bulk of the seasonal discharge is best described by a combination of the 15 

factors determining the extent and water equivalent of the snow pack in the catchments (precipitation, temperature, 

snow coverage). Omitting one of these predictors leads in fact to a reduction in model performance. 

• There is a general and plausible trend for higher importance of antecedent discharge in the later prediction months. 

In this period it can be expected that antecedent discharge has higher predictive power of the seasonal discharge 

compared to the winter months, i.e. during the accumulation phase, because it directly indicates the magnitude of the 20 

discharge generation from snow melt. This finding is valid for most catchments except 3. Chirchik, 5. Ala-Archa and 

7. Chilik. For Chirchik the importance of antecedent discharge is almost constant throughout the prediction months, 

both for the best model and on average. Contrary to this, antecedent discharge has very little importance for Ala-

Archa and Chilik. For Ala-Archa this observation can be explained by the small catchment size and thus the quick 

response of discharge to precipitation events and faster transit times, but also with the high proportion of glacier melt 25 

during the summer months. Thus the lower importance of antecedent discharge matches the catchment characteristics. 

The high importance of precipitation, which is higher than in any other catchment particularly in the later prediction 

months, also supports this reasoning. For Chirchik and Chilik, however, no plausible explanation can be derived from 

the basic catchment characteristics presented here.  

• The importance of the snow coverage predictors indicate a regional differentiation of the predictor importance. For 30 

the two catchments in the Altai region (1. Uba, 2. Ulba) snow coverage as an individual factor is of less importance 

compared to the other regions. This is due to different snow cover characteristics of these catchments which have 

comparatively lower altitudes compared to other catchments in this study. Therefore, snow accumulation in these 
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catchments is comparably low and quickly responds to increasing temperature already in the spring months. Seasonal 

snow cover variations obtained from MODSNOW-Tool (Gafurov et al, 2016) for these catchments also show (not 

shown in this manuscript) sudden snow cover depletion in the month of April for both catchments and for 1. Uba with 

multiple depletions also in winter months until April. Thus, snowmelt is not important in these catchments for seasonal 

discharge although it may be of high importance for spring discharge which is beyond the focus of this study. The 5 

reverse line of argument can be applied for the relatively high importance of snow coverage for the high altitude Tien 

Shan catchments (Nr. 8. to 11.), where snow coverage alone explains up to 40% of the explained variance by the 

MLR models, in addition to the share of snow coverage contained in the composites. For these catchments snow 

coverage is thus already a good indicator of the expected seasonal discharge.   

 10 

This general interpretation of the predictor importance shows that the selection of the predictors, particularly the change of 

predictors with prediction months and geographic region, has some hydrological meaning. However, this is on a rather abstract 

level describing the general runoff generation processes in high mountain catchments. Due to the simplicity of the approach 

and the simple linear relationship between the predictors, it is unlikely that more hydrological process information and 

understanding can be extracted from the MLR results. If at all, then on individual catchment basis only and by the interpretation 15 

of the exact predictors, i.e. not aggregated by classes as above. This is, however, beyond the scope of this study. But 

nevertheless, the observation described above indicate that the general runoff generation processes can be described by linear 

models, and that the presented forecast results are unlikely obtained by pure chance only.  

 

 20 
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Figure 7: Importance of the predictors in the linear models as absolute contribution to the explained variance (R2) for all catchments 
and prediction months. Left: of the best LOOCV model; Right: on average for the best 20 LOOCV models. Squares in the left panel 
figures indicate the presence of the different predictors used in the composites: snow cover, precipitation and temperature, using 
the same colour codes as for the individual predictors.  5 

 

4.3 Potential of operational application 

The presented method for deriving forecast models was designed according to the needs and data availability of the Central 

Asian hydromet services. It is based on station data readiliy available to the state agencies, thus fulfilling a core prerequisite 

for an operational implementation of the method. Moreover, the procedure for deriving forecast models is fairly simple and 10 

implemented in the open source software R. Therefore no limitations due to licence issues exist. The model development is 

automated requiring only some basic definitions as e.g. the formatting and provision of the predictor data  as ASCII text 

files, and the specification of the prediction month. Therefore the code can be applied by the staff of the hydromet services 
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after a short training. However, it has to be noted that the provided predictor data should be as complete as possible in order 

to avoid spurios model fitting results (overfitting). Due to the automatic model fitting the algorithm may find best 

performing models fitted to a few years only, if too many predictor data are missing. The chances of overfitting are then 

greatly increased as the degree of freedom of the linear models, i.e. the ratio of the years used for fitting to the variables in 

the prediction models, decreases.  5 

The presented model system can also be run with alternative predictor data. For example, it has been tested using gridded 

ERA-Interim re-analysis data for precipiutation and temperature, averaged monthly over the individual catchment areas. 

Similar, if not better results as presented were obtained. However, due to the latency of at least two months until the data is 

released, an operational use of the model system with ERA-Interim data is not feasible at the moment.  

 10 

6 Conclusions 

The presented study aimed at the development of a flexible and generic forecast model system for the prediction of the seasonal 

(April-September) discharge in Central Asian river basins, with the final goal of operational use in the hydromet services of 

the region. In order to achieve this the data requirements were kept as low as possible, using only monthly precipitation and 

temperature data from a single station in the individual catchments, accompanied by operationally processed monthly MODIS 15 

snow coverage data and monthly antecedent discharge. Based on this core predictor data set, a variety of monthly, multi-

monthly and composite predictors were automatically derived for different prediction dates. The predictors were then used for 

predicting the seasonal discharge with Multiple Linear Regression models (MLR). In order to avoid overfitting, restrictions 

were set on the selection and number of predictors in each MLR, and the models were tested for robustness by a Leave-One-

Out Cross Validation (LOOCV). An ensemble of prediction models was then selected based on the best Predictive Residual 20 

Error Sum of Squares (PRESS) of the LOOCV. 

The prediction model system was tested for the period 2000 – 2015 on a selection of 13 different river basins in different 

geographic and climatic regions, and with different catchment characteristics. It could be shown that the models provided good 

to excellent predictions for all catchments and for all defined prediction dates, resp. lead times. For the first prediction on 

January 1st, i.e. for a lead time of three months, the explained variance (R2) is already high in the range of 0.6 – 0.88 for 11 25 

catchments. For the following prediction on February 1st the explained variance is above 0.7 for all catchments, and increases 

further with the following months. For the important prediction date for the planning of water resources in the region on April 

1st just before the high flow season, R2 values are in the range 0.86 – 0.96, indicating exceptional high performance for a 

seasonal forecast. 

The automatic selection of the predictors and their importance revealed some geographic or temporal patterns. Geographically 30 

the northern Altai catchments differ in the predictor selection of the best LOOCV-MLR models from the other regions as 

snowmelt in this region has less contribution to seasonal discharge (April – September), with snow cover often reduced to zero 
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already in early spring. For all catchments the importance of antecedent discharge is increasing with progressing prediction 

dates. This is plausible from a hydrological perspective: While during the winter months the discharge is dominated by 

groundwater contribution, the discharge in April and later contains information about the snow melt process, and thus 

predictive power. Moreover, for predictions following April 1st the antecedent discharge represents already part of the 

predictand, and has thus an even higher predictive power. This means in summary that the selected predictors and their 5 

importance have some hydrological meaning, thus supporting the validity of the forecast models derived by the model system. 

However, it has to be noted that specific features of runoff generation in the catchments cannot be detected and discovered by 

the rather abstract level of predictors, predictor importance and the very basic catchment characteristics. 

Overall, the presented simple forecast system proved to be able to provide robust and very skilful forecast models for Central 

Asia. Moreover, it also provides a generic and flexible tool for the development of seasonal discharge forecast models for 10 

Central Asian rivers, which can be used by the responsible hydromet services without the need for larger investments in 

hardware, software, and education and training of staff. In fact, the model system is already tested in four Central Asian national 

hydro-meteorological services. The forecasts provided by the MLR models for the summer discharge of 2017 is benchmarked 

against existing forecast routines and finally the measured discharge in fall this year. 

The reason for the high performance is surely the separation of the largest share of annual precipitation (snow in winter), and 15 

the runoff generation (snow melt in spring and summer). Due to this temporal separation there is no need to perform a seasonal 

forecast of the precipitation for the summer period, which is typically very difficult and uncertain (Gerlitz et al., 2016). The 

forecast is rather based on an estimation of the snow pack accumulated in winter and its snow water equivalent, for which the 

predictors and their combinations provide proxy information. Moreover, the proxy information is not forecasted, but measured, 

thus providing more reliable information compared to forecasted predictors. As the timely separation of precipitation and 20 

runoff is a unifying feature of all Central Asian headwater catchments encompassing high-mountain ranges , the model system 

is able to perform exceptionally well for all tested catchments, though with different predictor combinations. It is thus also 

very likely, that the model system will also work well in the Central Asian catchments not included in this study, with some 

limitations for very small catchments. Moreover, it can be reasoned that it is likely that the model system will also work well 

in other regions with similar climatic settings, e.g. the South American dry Andes. 25 
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Annex 

Annex 1: Predictors used for the different prediction dates 

The following paragraphs list the predictors created and used for the different forecasts dates, ranging from January 1st to June 15 

1st. The predictors are abbreviated, with snowcov and sc denoting the snow coverage in the catchment derived by the 

MODSNOW-tool, precip the station records of precipitation, temp the station records of temperature, Q the discharge recorded 

at the river gauges. Catchment characteristics and the locations of the gauges are listed in Table 1.  The data for all predictors 

are monthly values (mean for snow coverage, temperature and discharge, sum for precipitation), with jan indicating January 

values, feb February values, mar March values, apr April values, may May values and jun June values. 20 

Multi-monthly values are mean values of the monthly values spanning over several months, whereas the range of the months 

included is indicated by the concatenation of the indicators of the months, e.g. janapr means multi-monthly means for the 

period January to April, or febmar indicates the mean of the months February and March. The predictor abbreviations are 

combined with the indicators for the months. snowcov_apr thus stands for the mean snow coverage of the catchment in April, 

or precip_janmar for the mean of the monthly precipitation sums for the months January to March.  25 

For the composites the predictors included are listed by their abbreviations, followed by the indicators for the months. For 

calculating the composites, the monthly values of the predictors denoted by the month indicators are multiplied. E.g. 

sc_temp_mar thus means the product of the mean snow cover in March and the mean temperature in March, or 

sc_temp_precip_janmay denotes the product of the multi-monthly means January to May of snow coverage, temperature and 

precipitation.  30 

 

Predictors used for prediction on January 1st 

Snow cover: 

snowcov_dec snowcov_nov snowcov_oct snowcov_octdec  

Precipitation: 35 

precip_dec precip_nov precip_oct precip_novdec precip_octdec 

Temperature: 
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temp_dec temp_nov temp_oct temp_novdec temp_octdec  

Composites snow cover x temperature: 

sc_temp_octdec  

Composites snow cover x precipitation: 

sc_precip_octdec  5 

Composites temperature x precipitation: 

temp_precip_dec temp_precip_nov temp_precip_oct temp_precip_octdec  

Composites snow cover x temperature x precipitation: 

sc_temp_precip_octdec  

Antecedent discharge: 10 

Q_dec Q_nov Q_oct Q_novdec Q_octdec 

 

Predictors used for prediction on February 1st 

Snow cover: 

snowcov_jan snowcov_dec snowcov_nov snowcov_oct snowcov_octjan  15 

Precipitation: 

precip_jan precip_dec precip_nov precip_oct precip_decjan precip_novjan precip_octjan 

Temperature: 

temp_jan temp_dec temp_nov temp_oct temp_decjan temp_novjan temp_octjan sc_temp_jan 

Composites snow cover x temperature: 20 

sc_temp_jan  

Composites snow cover x precipitation: 

sc_precip_jan  

Composites temperature x precipitation: 

temp_precip_jan temp_precip_dec temp_precip_nov temp_precip_oct temp_precip_decjan temp_precip_novjan 25 

temp_precip_octjan 

Composites snow cover x temperature x precipitation: 

sc_temp_precip_octjan 

Antecedent discharge: 

Q_jan Q_dec Q_nov Q_oct Q_decjan Q_novjan Q_octjan 30 

 

Predictors used for prediction on March 1st 

Snow cover: 

snowcov_feb snowcov_jan snowcov_janfeb snowcov_dec snowcov_nov snowcov_oct snowcov_octfeb 
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Precipitation: 

precip_feb precip_jan precip_dec precip_nov precip_oct precip_janfeb precip_decfeb precip_novfeb precip_octfeb 

Temperature: 

temp_feb temp_jan temp_dec temp_nov temp_oct temp_janfeb temp_decfeb temp_novfeb temp_octfeb 

Composites snow cover x temperature: 5 

sc_temp_jan sc_temp_feb sc_temp_janfeb  

Composites snow cover x precipitation: 

sc_precip_jan sc_precip_feb sc_precip_janfeb 

Composites temperature x precipitation: 

temp_precip_jan temp_precip_feb temp_precip_dec temp_precip_nov temp_precip_oct temp_precip_janfeb 10 

temp_precip_novfeb temp_precip_octfeb 

Composites snow cover x temperature x precipitation: 

sc_temp_precip_janfeb sc_temp_precip_octfeb  

Antecedent discharge: 

Q_feb Q_jan Q_dec Q_nov Q_oct Q_janfeb Q_decfeb Q_novfeb Q_octfeb 15 

 

Predictors used for prediction on April 1st 

Snow cover: 

snowcov_mar snowcov_feb snowcov_jan snowcov_janmar snowcov_febmar  

Precipitation: 20 

precip_mar precip_feb precip_jan precip_dec precip_nov precip_oct precip_febmar precip_janmar precip_decmar 

precip_novmar precip_octmar  

Temperature: 

temp_mar temp_feb temp_jan temp_dec temp_nov temp_oct temp_febmar temp_janmar temp_decmar temp_novmar 

temp_octmar  25 

Composites snow cover x temperature: 

sc_temp_mar sc_temp_febmar sc_temp_janmar  

Composites snow cover x precipitation: 

sc_precip_mar sc_precip_febmar sc_precip_janmar sc_precip_mar_decmar sc_precip_mar_novmar  

Composites temperature x precipitation: 30 

temp_precip_jan temp_precip_feb temp_precip_mar temp_precip_febmar temp_precip_janmar temp_precip_decmar 

temp_precip_novmar  

Composites snow cover x temperature x precipitation: 

sc_temp_precip_mar sc_temp_precip_febmar sc_temp_precip_janmar  
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Antecedent discharge: 

Q_mar Q_feb Q_jan Q_dec Q_nov Q_oct Q_febmar Q_janmar Q_decmar Q_novmar Q_octmar 

 

Predictors used for prediction on May 1st 

Snow cover: 5 

snowcov_apr snowcov_mar snowcov_feb snowcov_janapr snowcov_febapr snowcov_marapr  

Precipitation: 

precip_apr precip_mar precip_feb precip_jan precip_marapr precip_febapr precip_janapr precip_decapr precip_novapr 

precip_octapr  

Temperature: 10 

temp_apr temp_mar temp_feb temp_jan temp_marapr temp_febapr temp_janapr temp_decapr temp_novapr temp_octapr  

Composites snow cover x temperature: 

sc_temp_mar sc_temp_apr sc_temp_marapr sc_temp_febapr  

Composites snow cover x precipitation: 

sc_precip_mar sc_precip_apr sc_precip_marapr sc_precip_febapr  15 

Composites temperature x precipitation: 

temp_precip_jan temp_precip_feb temp_precip_mar temp_precip_apr temp_precip_febapr temp_precip_marapr 

temp_precip_octapr  

Composites snow cover x temperature x precipitation: 

sc_temp_precip_mar sc_temp_precip_apr sc_temp_precip_marapr sc_temp_precip_janapr  20 

Antecedent discharge: 

Q_apr Q_mar Q_feb Q_jan Q_marapr Q_febapr Q_janapr Q_decapr Q_novapr Q_octapr 

 

Predictors used for prediction on June 1st 

Snow cover: 25 

snowcov_apr snowcov_mar snowcov_feb snowcov_janapr snowcov_febapr snowcov_marapr  

Precipitation: 

precip_may precip_apr precip_mar precip_feb precip_jan precip_aprmay precip_marmay precip_febmay precip_janmay 

precip_octmay  

Temperature: 30 

temp_may temp_apr temp_mar temp_feb temp_jan temp_aprmay temp_marmay temp_febmay temp_janmay temp_octmay 

Composites snow cover x temperature: 

sc_temp_mar sc_temp_apr sc_temp_marmay  

Composites snow cover x precipitation: 
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sc_precip_mar sc_precip_apr sc_precip_marmay  

Composites temperature x precipitation: 

temp_precip_feb temp_precip_mar temp_precip_apr temp_precip_may temp_precip_marmay temp_precip_octmay  

Composites snow cover x temperature x precipitation: 

sc_temp_precip_mar sc_temp_precip_apr sc_temp_precip_marmay sc_temp_precip_janmay  5 

Antecedent discharge: 

Q_may Q_apr Q_mar Q_feb Q_jan Q_aprmay Q_marmay Q_febmay Q_janmay Q_octmay 
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